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In the Delta: * -
1) phytoplankton are a critical food resource  sobczak et al. ‘02

2) phytoplankton concentrations are generally limiting
’ Mueller-Solger et al. ‘02
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A CASCADE question:

How will phytoplankton biomass and
production respond to future:
changes In:

v turbidity/light =
\/Cla_\m distributions/abundance/biomass. -*
v’ hydrodynamics (flow, flushing)

T



We’re deyelop,lng detailed coupled models of
clam populations & phytoplankton
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For future scen‘grioyof change, we will run the
fancy, detailed numerical model of coupled
hydrodynamics+biology

In addition and in parallel, we are developing
some simple,?approaches as an intekmegdilate step
In assessing future changes to phytoplankton-in

2 * ‘»INDICES

' Lucas, Thompson, Brown L&O In press




An example of using I for
understanding ecosystem function
and assessing future scenarios:

An INDEX relating:

1) the local balance between
phytoplankton growth and loss

(“phytoplankton-enhancing” vs.
“phytoplankton depleting”™)

2) phytoplankton biomass will respond '
to a change in transport time
(e.g. residence time)

Lucas, Thompson, Brown L&O In press
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Across thegglobeythere
are many examplés._
where slower flow or
flushing-triggers or
exacerbates intense
algal blooms.paerl & Huisman 2008

¥

-
- POSITIVE .
phytoplankton-transport time
relationship

{ .=
-

The prevalence of this result may lead us to %~
expect that if we slow down transport (i.e’

hydraulic residence time/flushing time goes up),
then phytoplankton biomass will increase.



Positive P-T'doesn’t apply everywhere

The literature show a range of phytoplankton-
transport time (P-T) relationships, including negative
relationships and cases where there’s no apparent
relationship

A new concéptual model explains why':

- Biomass, as a function of growth and grazing, can go

up or down (or not change at all) with an increase In
transport time :

-
e Phytoplankton sign of change Is not determined by &
transport‘time, but rather by biological growth-10ss
balance

: Lucas, Thompson, Brown L&O In press



Toromn = timescale for growth

Tiss = timescale for losses

a simple INDEX of whether a habitat is
w‘phytoplankton-ENHANCING™
OR
“phytoplankton- {

(based on assumption of steady state
conditions; captures local process)

T Lucas, Thompson, Brown L&O In press



CASE 1: 1, >1

T growth

T loss

= timescale for growth

= timescale for losses
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= timescale for growth

T growth
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CASE 1:

*
Tloss > 1

(phytoplankton-enhancing)
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We can’t know how phytoplankton biomass will
respond to a change in FLOW or FLUSHING unless

we know about the balance between

(i.e. do we have a case 1 or case 2?)

Il , we can’t know If plugging
holes In levees around an open water habitat
will increase phytoplankton production and ™ &
biomass unless we know whether phytoplankton*
growth rate will dominate over losses such as

grazing !!!

L .
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Light parameter = | /(H*K,)

Tioss. TOr the Delta

% In(0.0S{ [ }+0.985J
Tioss  TOr Delta . _ H-K,

Tloss _
P 0.2+ {BG}
] H

Following:

Jassby et al. 2002,
Lopez et al. 2006
Cloern et al. 1995
14 Cole & Cloern 1980

—_
T

BG=benthic grazing rate
1 H=water depth

\ 1 |,=daily surface irradiance
: K=light attenuation
L L L L 1 L ——d D

-1 _H:II:I

—_—
]

Assuming:
Clam turnover rate = BG/H ZP=zooplankton grazing=0.2 dl

C:Chl=35 (Sobczak et al. 2002)



Tloss

*<1, phytoplankton-depleting
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*<1, phytoplankton-depleting
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Does T,,«* corréspond with phytoplankton biomass?

M |F local processes dominate
over transport between different

Tioss” Nabitats




Does T,,«* corréspond with phytoplankton biomass?

M |F local processes dominate
over transport between different

Tioss” Nabitats




For future seenarios, combine patterns of
Delta-wide...
et Water

temperature Salinity Insolation Turbidity depth

“=_ i

=

(also, the signrof P-T
relationship)

(map of projected
“phytoplankton-
enhan€ing” and
“phytoplankton-

> habitats)
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Future wark'(rest of CASCaDE)

e refine and apply “fancy” dynamic model of
coupled hydrodynamics+biology to assess

phytoplankton responses to scenarlos of
change

e In parallel, assess the power of simple
Indices (e.g. 1,.") to project how ecosystem
might respond to climate+anthropogenic -, "
change -






A simple mode‘f‘.of steady-state algal growth, loss
& transport

growth loss
downstream rate rate (e.g.
phyto. grazing)

biomass

u

U growth Hioss
Bout = Bin exp( X

domain
upstream velocity length i |
phyto. N
biomass - ks

— Lucas, Thompson, Brown L&O In review
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Express model 1h terms of time_scales:

U growth Hioss ) Ttran Ttrcm
B, =8B, expLxJ B =B exp[ —

u
4 growth TI 0SS

T = timescale for transport

tran

T orowtn = timescale for growth

T,,ss = timescale for losses




De}lne time scale ratios:

T T

_ fran " tran
Bout o Bin exp[ .

growth Tloss
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Howican <+ &8
models help? -

¥ e .
-Integrate’alsMme proeesses -
-Examine responses to simultaneous and

Interacting processes .r
-Highlight critical processes & sen3|t|v"“'t1€s
_ -Check our intuition s,

" _Control processes/examine scenarios



A simple |NDEXI of whether phytoplankton biomass
will incredse or decrease with transport time

Torown = timescale for growth

Tss = timescale for losses

1

- *
T loss >1 growth dominates losses, phyto T as transport timeT

- *
Tinss < 1 losses dominate growth, phyto l as transport time T

Lucas,.Thompsen, Brown L&O In Press



Indices offier an intermediate, semi-
quantitative approach to assessing-possible
responses to future scenarios of change

Guessing/ : Dynamic,
Intuitior? INDICES multi-dimensional
& | models
P S

’j»

o
&
e

Continuum of-approaches



Phytoplanktoh response togransport time is
determined by biologicgmources+losses

Clear (fast growt
+'low grazs

ST P Ll

Transport Phyto
time

Transport
timer _




Tt ---'What is it good for?
Advantages

e simple, useful shortcut
e guide/check intuition

= free of compugational constraints (can do way mere scenarios
than computationally intensive model)

e commonsense check for complex models

Disadvantages

T :
e purely local processes : [

e does not account for hydrodynamically driven interactions
between habitats (import, export, tidal sloshing, dispersion)

: h WHY WE NEED THE FANCY MODELS !
-



Change'in
. transport time

(relative to
baseline
case)

= R~
Change in local tendency for phytoplankton
accumulation or depletion




‘Conclusions

eDetailed numerical models allow us to quantitatively
describe multiple interaeting proeesses in a dynamic,
spatially variable system

=Indices prowee o semi-quantitative shortscut
approach for assessing ecosystem responses to Change

ePhytoplankton biomass-can go up or down with
Increased transport time, depending on the growth-
loss balance il

= =
Ca

“oA simple index (7,,..*) tells us the sign of change for
phytoplankton biomass as transport time changes

mE 0 -
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(map of projected il
“phytoplankton-
enhancipg’ and
“phytoplankton-

> habitats)

(also, the sign of P-T 2
relationship)
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